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Abstract. We study the static scalar susceptibility of the nuclear medium, i.e., the change of the quark
condensate for a small modification of the quark mass. In the linear sigma model it is linked to the
in-medium sigma propagator and its magnitude increases due to the mixing with the softer modes of the
nucleon-hole excitations. We show that the pseudoscalar susceptibility, which is large in the vacuum, owing
to the smallness of the pion mass, follows the density evolution of the quark condensate and thus decreases.
At normal nuclear matter density the two susceptibilities become much closer, a partial chiral symmetry
restoration effect as they become equal when the full restoration is achieved.
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1 Introduction

The problem of the quark condensate and chiral symme-
try restoration in a dense medium has been extensively
addressed. Little attention instead has been given to the
question of the fluctuations and correlations of the quark
scalar density. However for what concerns the chiral phase
transition this quantity is as relevant as the evolution of
the quark condensate. In the case of a second-order phase
transition, large spontaneous fluctuations occur with an
increase of the correlation length and of the relaxation
time.

Nuclear matter at normal density is well below the
critical density. Nevertheless chiral symmetry is apprecia-
bly restored. The order parameter decreases, as compared
to its vacuum value, by � 35%. One may then wonder
whether there exist also large spontaneous fluctuations of
the quark scalar density. The present work addresses these
questions. Our investigation is performed in an effective
theory, the linear sigma model. The two fields introduced
in this model to insure chiral symmetry, the pion and the
sigma, have a great relevance in nuclear physics, in such a
way that we can use, as a source of information, the expe-
rience acquired in this field. We investigate in particular
the correlations of the quark scalar density, showing how
their range increases with density. We also introduce the
fluctuations of the pseudoscalar quark density. We inves-
tigate how it evolves with density and its relation to the
order parameter.

a e-mail: chanfray@ipnl.in2p3.fr

2 Scalar susceptibility

For an infinite system which possesses translational in-
variance the quark density correlator only depends on the
relative space-time separation x. It can be defined as the
retarded Green’s function 〈−iΘ(x0)

[
qq(x), qq(0)

]〉. Previ-
ous investigations [1,2] have addressed the question of
the in-medium four-quark condensate, i.e., the quantity
〈qq(x)qq(x)〉 which is a correlator taken at the same space-
time point.

In the linear sigma model the symmetry-breaking piece
of the Lagrangian is proportional to the sigma field:

LχSB = c σ (1)

with c = fπm
2
π. This quantity plays the role of the

symmetry-breaking Lagrangian of QCD:

LQCD
χSB = −2mq q̄ q , (2)

where q̄q = (ūu+ d̄d)/2 , mq = (mu +md)/2 and we have
neglected isospin violation. Making use of the Gell-mann-
Oakes-Renner relation, we obtain the following correspon-
dence between the QCD and effective theory correlators:

〈q̄q(x) q̄q(0)〉
〈q̄q〉2vac

=
〈σ(x)σ(0)〉

f2
π

, (3)

where 〈qq〉vac is the vacuum value of the condensate. The
fluctuations of the quark density are thus carried by the
sigma field, the chiral partner of the pion. The in-medium
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propagation of the sigma in the energy domain near the
two-pion threshold, has been the object of several inves-
tigations (see, e.g., [3–5]). Here we will focus on aspects
which have been ignored, namely the low-energy region,
below the particle-hole excitation energies.

The increase in the range of the correlator is reflected
in the increase of the static susceptibility which can be-
come divergent at the critical density in case of a second-
order phase transition, a consequence of the appearance of
a soft scalar mode [6,7]. In QCD the conjugate variables
are the quark scalar density, which is the order parame-
ter, and the quark mass, which is the exciting field, anal-
ogous to the magnetic field. As an amusing illustration
of this analogy, in the Nambu-Jona-Lasinio (NJL) model,
the constituent quark mass differs from the current one
by the effect of the interaction with the condensate:

Mq = mq − 2G1 〈q̄q〉 . (4)

This relation presents an analogy with that between the
magnetic field inside the ferromagnet and the applied one
in the Weiss theory of magnetism:

H = H0 + λM . (5)

These two quantities differ by the existence of an internal
field, λM, proportional to the magnetization M. In NJL,
the action of the quark condensate on the quark mass thus
plays the role of the internal field of the Weiss theory.

The scalar susceptibility of QCD per unit volume rep-
resents the modification of the order parameter, which is
the quark condensate, to a small perturbation of the quark
mass, the parameter responsible for the explicit symmetry
breaking:

χS =
∂〈q̄q〉
∂mq

= 2
∫

dt′ dr′GR(r = 0, t = 0 , r′, t′) , (6)

where GR is the retarded quark scalar correlator:

GR(r, t, r′, t′) = Θ(t− t′) 〈−i
[
q̄q(r, t) , q̄q(r′, t′)

]〉 . (7)

The susceptibility represents space and time integrated
correlators. In the effective theory, the quark density fluc-
tuations are carried by the sigma field and the correspond-
ing scalar static susceptibility is given by

χS = 2
〈q̄q〉2vac
f2

π

∫ ∞

0

dω
(

2
πω

)
ImDSS(q = 0, ω)

= 2
〈q̄q〉2vac
f2

π

ReDSS(q = 0, ω = 0) , (8)

where DSS(q, ω) is the Fourier transform of the scalar cor-
relator:

DSS(q, ω) =
∫

dtdr eiωt e−iq·r

×
〈
−i T

(
σ(r, t)− 〈σ〉 , σ(0)− 〈σ〉

)〉
. (9)

We have replaced the retarded Green’s function by the
time-ordered one which is identical for positive frequen-
cies. One can also define a momentum-dependent suscep-
tibility according to

χS(q) = 2
〈q̄q〉2vac
f2

π

ReDSS(q, ω = 0) . (10)

The range of the fluctuations of the quark density is thus
given by the one of the sigma field. Notice that in the phase
of broken symmetry, which is the case at ordinary den-
sities, these fluctuations correspond to longitudinal ones,
i.e., along the direction of the spontaneous ordering which
is that of the scalar field. In a very simple picture where
the sharp sigma mass is reduced in the nuclear medium,
i.e. mσ replaced by some dropped value, m∗

σ, as has been
suggested by Hatsuda et al. [4], the static correlator is
exp(−m∗

σr)/r. Hence, as m
∗
σ goes to zero at full chiral

symmetry restoration, the fluctuations acquire an infinite
range as for fluids near the critical temperature. In the
work of Hatsuda et al. the sigma mass modification arises
from the tadpole term. Here, we include the coupling of
the sigma to the nucleon-hole excitations, which modifies
the scalar field propagator as follows:

DSS = D0
S (1 + D0

S g
2
SΠSS) . (11)

Here D0
S = 1/(q2 − m2

σ) is the bare sigma propagator,
ΠSS is the full scalar NN−1 polarization propagator, and
gS is the σNN coupling constant. This last quantity is a
function of the momentum transfer but it may also be den-
sity dependent, as proposed in the quark-meson coupling
model (QMC) [8]. We will come back to this question. In
the low-density limit where the non-relativistic approxi-
mation applies, the polarization propagator ΠSS reduces
to the free Fermi gas expression:

ReΠ0(q, ω = 0) = −MN kF
π2

×
[
1 +

1
t

(
1− t2

4

)
ln

(
1 + t/2
1− t/2

)]
. (12)

At low momentum, it is a slowly varying function of t =
|q|/kF:

ReΠ0(q, ω = 0) � −2MN kF
π2

(
1− t2

12

)
. (13)

This expression, taken at t = 0, introduced in the re-
lation (11), provides the low-density expression for the
unit volume scalar susceptibility of the infinite nuclear
medium:

χS = 2
〈q̄q〉2vac
f2

π

ReDSS(q = 0, ω = 0) �

χS,vac

(
1 +

2 g2SMN kF
π2m2

σ

)
. (14)

Notice that, in our definition, the scalar susceptibility is,
as the quark condensate, negative, i.e., it increases the
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magnitude of the condensate. An in-medium increase of
its absolute value thus opposes the restoration effect. For
the actual evaluation of the RPA correction in the low-
est order, we take the parameters from Guichon et al. [9]:
g2S/m

2
σ = 0.71GeV−2. This estimate leads to a large modi-

fication of the sigma propagator: at normal nuclear matter
density ρ0, DS ∼ 12D0

S. Thus we have reasons to believe
in a sizeable in-medium increase of the scalar susceptibil-
ity. This reflects the increase of the range of the scalar
quark density correlator: the quark density fluctuations,
transmitted by the sigma-meson, are relayed by the nucle-
ons, thus increasing their range. Notice that this effect can
be interpreted as arising from an in-medium decrease of
the sigma mass. This mass is a screening one and not the
energy of the pole of the sigma propagator at zero momen-
tum. We point out that the mixing with the NN−1 exci-
tations does not affect the scalar spectral function at high
energy, beyond the two-pion threshold, since ΠSS vanishes
in this energy range, which is well above the nuclear exci-
tation energies.

Now, for a more quantitative evaluation, we have to
know how much the full ΠSS deviates from the free one:
Π0, which is a pure nuclear physics problem, on which
experimental information can be obtained. Especially at
normal nuclear matter density the full polarization prop-
agator ΠSS, at zero momentum, is linked to the incom-
pressibility factor K of nuclear matter, the magnitude of
which is known, even if the exact value is still under in-
vestigation:

ΠSS(q = 0, ω = 0, ρ0) = − 9 ρ0
K
. (15)

With the currently suggested value, K = 230 MeV, which
is practically the free Fermi gas one: K = 3k2

F/MN , the
quantity ΠSS(q = 0, ω = 0) also has the free Fermi gas
value given in eq. (13). This supports the previous first-
order estimate, which led to a large increase of the scalar
susceptibility.

However, to be more precise, we have to discuss also
in more details the value of the σNN coupling constant
entering the renormalization factor in eq. (11). We men-
tioned that this quantity may depend on the density. This
is the case in the quark-meson coupling model (QMC) [8].
This model preserves chiral invariance and its main con-
sequence can be incorporated in the linear sigma model.
It has been introduced to account for the nuclear satu-
ration, which is not accounted for in the original sigma
model [10]. In view of its relevance in our problem, we en-
ter in some details of this model. It is an extension of the
quantum hadrodynamics model [11,12], but formulated
directly at the quark level. In QMC the scalar meson and
vector mesons couple directly to the quarks inside the nu-
cleons, described by a bag model. The crucial ingredient
of the model is that the nucleon has an internal structure
which adjusts to the presence of the scalar field. Indeed,
under the influence of this attractive field the quark mass
is lowered according to: m∗

q = mq − gq
σ〈σ〉, where gq

σ is the
sigma quark coupling constant. Accordingly, the valence
quark scalar number, which depends on the quark mass,
also decreases, the quarks becoming more relativistic. This

effect is directly related to the QCD scalar susceptibility of
the bag, χbag

S . Introducing the scalar charge, QS, defined
as the valence quark scalar number:

QS(〈σ〉) =
∫

dr (〈q̄q(r)〉 − 〈q̄q〉vac)

= QS(mq) + χbag
S (m∗

q − mq)

= QS(〈σ〉 = 0) − gq
σ χ

bag
S 〈σ〉 . (16)

Now, the scalar charge acting as the source of the scalar
field, a decrease of the scalar charge amounts to a lowering
of the σNN coupling constant, when the mean scalar field,
i.e., the density, increases:

gS(ρ) = gq
σ QS(〈σ〉) . (17)

In QMC this mechanism is responsible for the saturation
of nuclear matter. Alternately the effect can be viewed
as the creation of an induced scalar charge, Qind

S , due to
the presence of the scalar field and proportional, for small
intensities, to the field, with

Qind
S = − gq

σ χ
bag
S 〈σ〉, per nucleon. (18)

In the nuclear medium, the presence of the induced
charges modifies the propagation equation of the scalar
field. Adding the intrinsic and the induced sources, we
have in the static situation the following result in a uni-
form medium:

〈σ〉 = gS ρS

m2
σ + (gq

σ)2 χbag
S ρS

. (19)

Here ρS is the nucleon scalar density and gS is the value
of the coupling constant for a vanishing scalar field. The
introduction of χbag

S , which is positive amounts to an in-
crease of the sigma mass:

m∗2
σ (ρ) = m2

σ + (gq
σ)

2 χbag
S ρS , (20)

which counteracts the decrease due to the mixing with
NN−1 states. Interpreted as an optical potential for the
propagation of the sigma, related to the σN amplitude,
this internal structure effect represents a non-Born σN
amplitude. What we had discussed previously was the in-
fluence of the Born amplitude (no excitation of the nu-
cleon took place) taken alone on the sigma propagation.
We have now to combine the two influences, of the non-
Born and Born, with the result:

DS = D̃0
S

(
1 + g2S D̃

0
SΠSS

)
(21)

with D̃0
S = −(m∗2

σ (ρ))−1, at zero four-momentum. Com-
paring with the vacuum value D0

S, we have at normal nu-
clear matter density

DS =
m2

σ

m∗2
σ

D0
S

(
1 +

g2S ρ0
m∗2

σ

9
K

)
=

m2
σ

m∗2
σ

D0
S

(
1 + gS 〈σ(ρ0)〉 9

K

)
, (22)
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where 〈σ(ρ)〉 is the average sigma field in the medium. For
a bag radius of 0.8 fm Guichon et al. [9] give gS〈σ(ρ0)〉 �
200 MeV. The corresponding increase of the square sigma
mass is 18%. For consistency we use also the value of
the model for the incompressibility: K = 280 MeV (also
compatible with the experimental allowed range). With
these values, the enhancement factor of the scalar suscep-
tibility turns out to be χS(ρ0)/χS,vac = 6.2, still a large
medium effect. This increase reflects that of the range of
the quark scalar density fluctuations which, transmitted
by the sigma field, are relayed by the nucleons.

3 Pseudoscalar susceptibility

This factor applies to the “parallel” susceptibility, along
the order parameter. In the broken phase, there exists a
transverse one, along the “perpendicular” direction. For
QCD this is the pseudoscalar susceptibility, linked to the
fluctuations of the pseudoscalar quark density. We define
it in such a way that it coincides with the scalar suscepti-
bility in the restored phase:

χPS = 2
∫

dt′ dr′Θ(t − t′)

×
〈
−i

[
q̄ iγ5

τα
2
q(0) , q̄ iγ5

τα
2
q(r′ t′)

]〉
. (23)

This pseudoscalar susceptibility is related to the correlator
of the divergence of the axial current since

∂µAα
µ(x) = 2mq q̄ iγ5

τα
2
q(x) . (24)

In representations where PCAC holds, which is the case
in the linear sigma model or in specific representations of
the non-linear one, the interpolating pion field is taken
to be proportional to the divergence of the axial current
according to

∂µAα
µ(x) = fπm

2
πΦ

α(x) . (25)

The pseudoscalar susceptibility χPS is then linked to the
pion propagator, taken at zero momentum and energy:

χPS =
f2

πm
4
π

2m2
q

∫
dt′ dr′Θ(t − t′)〈−i [Φα(0) , Φα(r′ t′)]〉

=
f2

πm
4
π

2m2
q

ReDπ(q = 0, ω = 0) . (26)

Since the factor multiplying the pion propagator can be
written as 2 〈q̄q〉2vac/f2

π , this equation is the analog of the
one for the scalar susceptibility, with the pion replacing
the sigma. Thus one reaches, in the linear sigma model,
a symmetric situation where the two susceptibilities are
governed by the propagators of the two chiral partners, σ
and π. In the medium we denote S(q , ω) (which implicitly
depends on the density) the pion self- energy so that

Dπ(q = 0, ω) =
[
ω2 − m2

π − S(q = 0, ω)
]−1

. (27)

The expression of the self-energy depends on the represen-
tation. The one that should enter here is the one which
applies to the PCAC representation. Its expression which
has been discussed by Delorme et al. [13] is not simple.
Firstly because the π-N scattering amplitude itself has a
complicated off-shell dependence, with the sign change be-
tween the Cheng-Dashen and the soft point. In addition,
to second order in the nucleon density, it contains terms
which are specific to this representation and are imposed
by chiral symmetry. This complexity is however irrelevant
for our purpose which is to establish a link with the con-
densate evolution. At zero four-momentum one has

ReDπ(q = 0, ω = 0) = − 1
m2

π + S(0, 0)
. (28)

On the other hand, the evolution with density of the con-
densate is governed by the nuclear sigma commutator:
ΣA/A per nucleon, according to the exact expression

〈q̄q(ρ)〉
〈q̄q〉vac = 1 − (ΣA/A) ρ

f2
πm

2
π

. (29)

The nuclear sigma commutator, which a priori depends
on the density, is defined as the expectation value over the
nuclear ground state of the commutator between the axial
charge and its time derivative. From QCD this quantity
is also the volume integral of the difference between the
in-medium condensate and its vacuum value is

ΣA = 2mq

∫
dr

(〈q̄q(ρ)〉 − 〈q̄q〉vac
)
, (30)

hence the relation (29). In the PCAC representation, the
nuclear sigma commutator also represents the scattering
amplitude for soft pions on the nuclear medium, T (0, 0)
(per unit volume), with

(ΣA/A) ρ
f2

π

= T (0, 0) . (31)

This last quantity is related to the pion self-energy, S(q, ω)
through

T (0, 0) =
S(0, 0)

1 + S(0, 0)/m2
π

. (32)

In this expression the denominator represents the coher-
ent rescattering of the soft pion [14]. This distortion factor
is needed in order to make the nuclear sigma commuta-
tor independent of the representation, as was discussed in
ref. [13]. In fact, in the density dependence of the conden-
sate, the distortion is cancelled by many-body terms of
the self-energy but here we do not need the explicit form
of the self-energy and it is necessary to include the dis-
tortion. It is now possible to establish a link between the
pseudoscalar susceptibility and the in-medium condensate
by writing the condensate from its expression (eq. (29))
as

〈q̄q(ρ)〉
〈q̄q〉vac = 1 − T (0, 0)

m2
π

=
1

1 + S(0, 0)/m2
π

. (33)
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From the expression of the pseudoscalar susceptibility
(eq. (26)) and using the GOR relation, one finally ob-
tains the following relation, which is independent of the
representation:

χPS =
〈q̄q〉vac
mq

1
1 + S(0, 0)/m2

π

=
〈q̄q(ρ)〉
mq

. (34)

The pseudoscalar susceptibility follows the condensate
evolution, i.e., its magnitude decreases with density, with
a linear dependence in the dilute limit where the relation
(ΣA/A) = ΣN holds. At normal density the susceptibil-
ity has thus decreased by 35%. The presence of the quark
mass in the denominator of the expression of χPS makes
it divergent in the chiral limit, as it should.

Our previous relation (34) between the transverse
(pseudoscalar) susceptibility and the order parameter (the
condensate) can be understood from the magnetic anal-
ogy. The rotational symmetry is intrinsically broken by a
magnetic field H0 which aligns the spontaneous magneti-
zation along its direction. The application of a small trans-
verse field H⊥ rotates the magnetization M by a small
angle θ, such that it is now aligned in the direction of the
resulting field H0 +H⊥. The transverse magnetization is
M⊥ =M θ =M(H⊥/H0) and the transverse susceptibil-
ity is χ⊥ = M⊥/H⊥ = M/H0, which is the analog of our
formula (34).

Since the pseudoscalar susceptibility is governed by
the pion propagator, it is natural to discuss also its rela-
tion to the pion mass evolution [15]. We define, as usual,
the in-medium effective mass, m∗

π(T, ρ), as the energy
of the pole of the pion propagator taken at zero three-
momentum, which differs from the definition of Rajagopal
and Wilzcek [7], where m∗2

π (T, ρ) is directly taken as the
inverse susceptibility. The problem of the relation be-
tween the pion mass and the condensate evolutions has
already been addressed, for the nuclear medium or the
heat bath [15]. In the heat bath for instance the presence
of the residue in the pion propagator makes the inverse
squared pion mass to decrease three times more slowly
with temperature than the condensate.

A similar difference between the two evolutions oc-
curs in the nuclear medium. The density dependence of
the quark condensate, the pion propagator and the pion
mass were extensively studied by Delorme et al. [13], up
to second order in the density, in two different representa-
tions of the non-linear sigma model. They have shown that
both the condensate and the pion mass are independent
of the representation, as it should, the pion propagator
instead is not. We reproduce in table 1 their result for
these three quantities in the representation where PCAC
applies and in the Weinberg representation. In the first
one, the pion propagator at zero momentum and the con-
densate are proportional. The table clearly displays the
difference between the inverse pion mass squared and the
pseudoscalar susceptibility evolutions.

(b)

N

p

h

σ

σ                                            σ

(a)

Fig. 1. Influence of the melting of the scalar field into the con-
densate (represented by a cross) on (a) the condensate, (b) the
scalar susceptibility.

4 Results and conclusion

We now comment our conclusion that at normal density
the scalar and pseudoscalar susceptibilities become closer
than in the vacuum. In order to show that this convergence
is not accidental but is a manifestation of chiral symmetry
restoration, we have to enter into the various mechanisms
responsible for the restoration process. One of them is
the nuclear scalar field melting into the condensate, which
has the same quantum number (see fig. 1). It leads to a
modification of the condensate, ∆σ〈q̄q(ρ)〉 (accordingly of
the pseudoscalar susceptibility) by

∆σ〈q̄q(ρ〉 = −〈q̄q〉vac gsρs

fπm2
σ

= Bρs , (35)

in which the second equation simply defines the pro-
portionality factor B. Now, comparing this to the
modification of the scalar suceptibility arising from the
coupling of the scalar field to the nucleons, which can
be written as ∆χS = 2B2ΠSS, we see that the factor
B enters with a square power and the nucleon density
has been replaced by the nucleon-hole propagator. But a
unique mechanism has produced the decrease of the order
parameter and the increase of the scalar susceptibility.
A similar correspondence exists for the influence of the
nuclear pions. Their scalar density, which is linked to the
mean value of the square pion field, 〈Φ2〉, modifies the
condensate according to

∆π〈q̄q(ρ〉 = −〈q̄q〉vac 〈Φ2〉
2f2

π

= C 〈Φ2〉 . (36)

While the influence of the two-pion continuum on the
scalar susceptibility is

∆χS = 2
〈q̄q〉2vac
f2

π

1
m4

σ

m4
σ

4f2
π

G2π(q = 0, ω = 0)

= 2C2G2π(q = 0, ω = 0) . (37)

In the scalar susceptibility the pion density is replaced by
the two-pion propagator G2π and the factor C enters at
the square power. The evolutions of the two susceptibil-
ities are correlated in the sense that a unique mechanism
(for instance the melting of the scalar nuclear field in the
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Table 1. Comparison of the results obtained with two non-linear Lagrangians, LW which do not satisfy PCAC and L′ which
does. The successive lines give the inverse pion propagator, the squared pion effective mass and the density evolution of the
quark condensate, i.e., of the pseudoscalar susceptibility. We define x = ρΣN/f2

πm2
π and x2,3 = ρ c2,3/f2

π , where c2,3 are the
standard parameters of the chiral Lagrangian [12].

LW L′

D−1
π (ω, q )

[
1 + 2(x2 + x3)

]
ω2

[[
1 + 2(x2 + x3)

]
ω2 − (1 + 2x3)q

2

−(1 + 2x3)q
2 − (1 − x)m2

π −(1 − x)m2
π

]
/(1 − x)2

m∗2
π

m2
π

1 − x

1 + 2(x2 + x3)

1 − x

1 + 2(x2 + x3)

〈qq(ρ)〉
〈qq(0)〉 1 − x 1 − x

condensate) is responsible for the enhancement of one
susceptibility and the decrease of the other. In fact it is
possible to establish this link by a direct evaluation of
the scalar susceptibility from the condensate, by taking
the derivative with respect to the quark mass. Consider
for instance the contribution from the pion loops, which
modifies the condensate according to eq. (36). The
nuclear pion density, 〈Φ2〉, depends on the pion mass,
i.e., on the quark mass and thus generates a contribution
to the nuclear scalar susceptibility. Since 〈Φ2〉 is related
to the pion propagator, its derivative with respect to
mq is linked to the two-pion propagator taken at zero
momentum, which leads to our previous eq. (37).

Coming back to the convergence of the two susceptibil-
ities, it arises from both evolutions. The smaller relative
decrease of the pseudoscalar one is compensated by the
large value of this susceptibility, owing to the smallness of
the pion mass. In view of this large convergence effect at
normal density, it is natural to explore the phenomenon
at larger densities. We cannot perform this extrapolation
with certainty but we can have some indications. The mix-
ing of theNN−1 states with the sigma which is responsible
for the increase of the scalar susceptibility may not de-
velop much further for several reasons. The quantity ΠSS

involves the scalar nucleon density which increases more
slowly than the ordinary density. Moreover it is propor-
tional to the effective nucleon mass which decreases with
density. Finally the nucleon reaction to the scalar field
manifests itself more with increasing density. In order to
evaluate the influence of these effects at any density, we
take for the quantity g2S D̃

S
0 ΠSS(q = 0, ω = 0) the ansatz

g2S D̃
S
0 ΠSS = gS 〈σ(ρ)〉 3M

∗
N (ρ)
k2
F

, (38)

which holds at ρ0, since K is close to the Fermi gas value,
but may not when the density increases. We take the val-
ues of the scalar field and of the effective nucleon mass
from [9]. With these inputs we find that the enhance-
ment factor of the scalar susceptibility stabilizes, with
even a certain decrease. It is 5.2 at 1.5ρ0 and 4.8 at 2ρ0.
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Fig. 2. Pseudoscalar (continuous line) and scalar (dots) sus-
ceptibilities as a function of the nuclear density. Both are nor-
malized to the vacuum scalar susceptibility with a sigma mass
of 550 MeV. In the pseudoscalar susceptibility the indepen-
dent nucleon approximation has been assumed for the quark
condensate evolution. For the scalar one, the points has been
evaluated with the ansatz described in the text, but for the
normal density point in which the “experimental” incompress-
ibility has been introduced (its special character is indicated
by the double circle).

The behavior with density of the two susceptibilities is
shown in fig. 2 but we stress again that for the scalar one,
only the point at ρ0 rests on the experimental input of
the compressibility. Moreover this evaluation only takes
into account the mixing of the sigma with the nucleon-
hole states. Its mixing with two-pion states should also
be incorporated especially at large densities. The point at
0.5ρ0, evaluated with the same ansatz, is only given for il-
lustration as one enters here in the region of the spinodal
instability.
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In summary we have studied two QCD susceptibilities
of the nuclear medium, the scalar-isoscalar one and
the pseudoscalar-isovector one. They are linked to the
fluctuations of the corresponding quark densities. For the
first one, the use of the linear sigma model provides a link
with the propagator of the sigma-meson. In the nucleus
this meson mixes with the low-lying scalar-isoscalar
nuclear excitations. In this respect, it is important to
stress the following point. We have assimilated the sigma
field of the linear sigma model (i.e. the chiral partner
of the pion) with the nuclear scalar field responsible of
nuclear binding in QHD. However, the latter is a chiral
invariant while the chiral partner of the pion is not.
We have shown in a previous work [16] that the two
fields can be related in the common framework of the
linear sigma model. They differ by a term proportional
to the pion scalar density, which has a quenching effect
on the fluctuations. This is presently ignored. It will
be taken into account in a forthcoming work, but we
expect a moderate influence. One can also question the
relevance of the sigma model for the problem of the quark
density fluctuations. Actually these fluctuations couple to
those of the nucleon scalar density, which increases their
range. The linear sigma model provides an evaluation
for this coupling which must be present. At the normal
nuclear density the mixing with the nuclear excitations
is constrained by standard nuclear phenomenology, i.e.,
by the nuclear-matter incompressibility. It leads to an
increase of the magnitude of the scalar susceptibility by
a factor of about 6. This effect, although pronounced at
normal density, does not appear to increase further with
increasing density. Indeed, at higher densities, the sigma
is expected to decouple from the scalar NN−1 excitations.
As for the pseudoscalar susceptibility, which is linked to
the pion propagator, we have shown that it follows the
evolution of the condensate, i.e., its magnitude decreases
with density. The two combined effects make the scalar
and pseudoscalar susceptibilities appreciably closer in
the nuclear medium than in the vacuum, already at the

normal density. This convergence is a strong signal of chi-
ral symmetry restoration.

We have benefited from fruitful discussions with W.Alberico,
D. Davesne, P. Guichon, A. Molinari and J. Wambach.
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